Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros

Base de dados
Tópicos
Ano de publicação
Tipo de documento
Intervalo de ano
1.
Microchem J ; 190: 108658, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: covidwho-2258027

RESUMO

Establishing sensitive and targeted analytical methodologies for drug identification in biological fluids as well as screening of treatments that can counteract the most severe COVID-19 infection-related side effects are of utmost importance. Here, first attempts have been made for determination of the anti-COVID drug Remdesivir (RDS) in human plasma using four potentiometric sensors. Calixarene-8 (CX8) was used as an ionophore applied to the first electrode (Sensor I). The second had a layer of dispersed graphene nanocomposite coating (Sensor II). (Sensor III) was fabricated using nanoparticles of polyaniline (PANI) as ion-to-electron transducer. A reverse-phase polymerization using polyvinylpyrrolidone (PVP) was employed to create a graphene-polyaniline (G/PANI) nanocomposite electrode (Sensor IV). Surface morphology was confirmed by Scanning Electron Microscope (SEM). UV absorption spectra and Fourier Transform Ion Spectrophotometry (FTIR) also supported their structural characterization. The impact of graphene and polyaniline integration on the functionality and durability of the manufactured sensors was examined using the water layer test and signal drift. In the ranges of concentration of 10-7 to 10-2 mol/L and 10-7 to 10-3, sensors II & IV exhibited linear responses; respectively while sensors I & III displayed linearity within 10-6 to 10-2 mol/L. The target drug was easily detectable using LOD down to 100 nmol/L. The developed sensors satisfactorily offered sensitive, stable, selective and accurate estimate of Remdesivir (RDS) in its pharmaceutical formulation as well as spiked human plasma with recoveries ranging from 91.02 to 95.76 % with average standard deviations less than 1.85. The suggested procedure was approved in accordance with ICH recommendations.

2.
Chem Eng J ; 457: 141260, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2227152

RESUMO

Standard clinical care of neonates and the ventilation status of human patients affected with coronavirus disease involves continuous CO2 monitoring. However, existing noninvasive methods are inadequate owing to the rigidity of hard-wired devices, insubstantial gas permeability and high operating temperature. Here, we report a cost-effective transcutaneous CO2 sensing device comprising elastomeric sponges impregnated with oxidized single-walled carbon nanotubes (oxSWCNTs)-based composites. The proposed device features a highly selective CO2 sensing response (detection limit 155 ± 15 ppb), excellent permeability and reliability under a large deformation. A follow-up prospective study not only offers measurement equivalency to existing clinical standards of CO2 monitoring but also provides important additional features. This new modality allowed for skin-to-skin care in neonates and room-temperature CO2 monitoring as compared with clinical standard monitoring system operating at high temperature to substantially enhance the quality for futuristic applications.

3.
Sci Total Environ ; 862: 160700, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2150569

RESUMO

In this work, we report an impedimetric system for the detection of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike protein. The sensing platform is based on recombinant Spike protein (SCoV2-rS) immobilized on the phytic acid doped polyaniline films (PANI-PA). The affinity interaction between immobilized SCoV2-rS protein and antibodies in the physiological range of concentrations was registered by electrochemical impedance spectroscopy. Analytical parameters of the sensing platform were tuned by the variation of electropolymerization times during the synthesis of PANI-PA films. The lowest limit of detection and quantification were obtained for electropolymerization time of 20 min and equalled 8.00 ± 0.20 nM and 23.93 ± 0.60 nM with an equilibrium dissociation constant of 3 nM. The presented sensing system is label-free and suitable for the direct detection of antibodies against SARS-CoV-2 in real patient serum samples after coronavirus disease 2019 and/or vaccination.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2 , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Anticorpos , Técnicas Eletroquímicas , Eletrodos
4.
Appl Mater Today ; 27: 101473, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: covidwho-1777973

RESUMO

The pandemic of the coronavirus disease 2019 (COVID-19) has made biotextiles, including face masks and protective clothing, quite familiar in our daily lives. Biotextiles are one broad category of textile products that are beyond our imagination. Currently, biotextiles have been routinely utilized in various biomedical fields, like daily protection, wound healing, tissue regeneration, drug delivery, and sensing, to improve the health and medical conditions of individuals. However, these biotextiles are commonly manufactured with fibers with diameters on the micrometer scale (> 10 µm). Recently, nanofibrous materials have aroused extensive attention in the fields of fiber science and textile engineering because the fibers with nanoscale diameters exhibited obviously superior performances, such as size and surface/interface effects as well as optical, electrical, mechanical, and biological properties, compared to microfibers. A combination of innovative electrospinning techniques and traditional textile-forming strategies opens a new window for the generation of nanofibrous biotextiles to renew and update traditional microfibrous biotextiles. In the last two decades, the conventional electrospinning device has been widely modified to generate nanofiber yarns (NYs) with the fiber diameters less than 1000 nm. The electrospun NYs can be further employed as the primary processing unit for manufacturing a new generation of nano-textiles using various textile-forming strategies. In this review, starting from the basic information of conventional electrospinning techniques, we summarize the innovative electrospinning strategies for NY fabrication and critically discuss their advantages and limitations. This review further covers the progress in the construction of electrospun NY-based nanotextiles and their recent applications in biomedical fields, mainly including surgical sutures, various scaffolds and implants for tissue engineering, smart wearable bioelectronics, and their current and potential applications in the COVID-19 pandemic. At the end, this review highlights and identifies the future needs and opportunities of electrospun NYs and NY-based nanotextiles for clinical use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA